Key Dates
May or June, 2022
March, 2022
Abstract Submission Deadline
May or June, 2022
Online Registration Deadline
May or June, 2022
On-site Registration Dates


Xueni Zhao


High-strength and -toughness bioactive Mg-doped hydroxyapatite bioceramics with oriented microchannel prepared using continuous carbon fibre


Xueni Zhao


Shaanxi University of Science and Technology


赵雪妮:女,19747月生,工学博士,教授,博士研究生导师。陕西高校青年创新团队(生物材料3D仿生制备及金属板材控形控性技术研发创新团队)带头人,陕西省机械工程学会理事,西安市机械工程学会模具工程分会秘书长、常务理事,西安市机械工程学会技术咨询及推广工作委员会委员,研究方向为医用材料及器械的研究3D打印技术研究以第一完成人省部级科技进步二等奖等4项,获批国家自然科学基金面上项目2项,省级项目等4项,以第一作者/通讯作者在Applied surface scienceTop期刊,IF 6.707)等期刊发表论文35篇,SCIEI论文27篇。第一发明人申请专利35(其中美国和澳大利亚专利各1件),授权发明专利14件、实用新型专利6件。


Oriented microchannel Mg-doped hydroxyapatite (MH) with balanced mechanical and biological properties was originally constructed by hot-pressing sintering and pore-forming heat treatment using continuous carbon fibre (CF) as pore-forming agent. Proportion of MH and (Ca, Mg)3(PO4)2 of microporous bioceramics with an adjacent microchannel spacing of 400 μm and sintered at 900 °C (900-2P-MH) was 52.1/47.9 to promote degradation. The compressive strength of oriented microchannel MH bioceramics with suitable pore size (5–14 μm) did not decrease but increase in comparison with the dense MH (900-D-MH). In particular, compression strength of oriented microchannel MH bioceramics constructed with 1 CF was 53.31% higher than that of 900-D-MH. Fracture toughness of 900-2P-MH rose to 177.66% of 900-D-MH. The strengthening and toughening mechanism includes contribution of the combination of heating and pressing, uniformly distributed microchannel and in situ formation of continuous micro/nano-MH ceramic tube. Moreover, apatite mineralization of microchannel MH in simulated body fluid (SBF) was obviously improved. Analysis of the rat tibial bone defect model showed that the relative bone volume of 900-D-MH and 900-2P-MH increases by 23.18% and 37.37% compared with that of hydroxyapatite, respectively. Furthermore, 900-2P-MH displayed reasonable reduction of strength due to degradation after 8 weeks of implantation. Satisfactory osteogenic properties and degradability can be attributed to the doping of Mg2+ and oriented microchannel.