Key Dates
December 5-6, 2021
October 25, 2021
Abstract Submission Deadline
December 6, 2021
Online Registration Deadline
December 4, 2021
On-site Registration Dates


Guangliang Zhang


Zhang Guangliang received the M.D. degree in clinical medicine of Soochow University in 2018.  From 2015 to 2017, he was a visiting scholar at the Wake Forest Institute for Regenerative Medicine in USA. From 2018 to 2020, he was a post-doctoral scholar with the School of Materials at the Soochow University. Since 2014, he has been a hand surgeon at Ruihua affililated Hospital of Soochow University . His main research interests are focused on basic and clinical research on wound repair, including the design and modeling of 3D bioprinted skin and vascularization of tissue.

Topic title:

Regulation of Vascular Branch Formation in a 3D Bioprinting Tissue using Mechanical Confined Force


The quality of the vascular network is key to the success of skin transplants. For skin grafts created with tissue engineering, vascularization is a critical step determining tissue survival. Pre-vascularization of bioengineered tissues is the basis for the establishment of effective high-quality vascular networks. In our study, a 3D bioprinted model was established to study the effects of mechanical stimulation on vascular tissue development. A co-culture of human dermal fibroblasts (HNDFs) and human umbilical vein endothelial cells (HUVECs), mixed with fibrin hydrogel, was confined by a polycaprolactone (PCL) frame and suspended in medium after culture. The results showed that a 3D bioprinted model to simulate the mechanical stimulation of vascular tissue development was established. Based on this, we here create a pre-vascularized tissue using 3D bioprinting and show that the vascular branches of the tissue can be controlled by confined forces created by size change of the polycaprolactone (PCL) framework (Fig. A-C). The confined force was measured. The Yes-associated protein participated in the regulation of vascular branch formation in the tissue. Moreover, a close relationship between the width of the cell-fibrin strip, the magnitude of force and the number of vascular branches in the bioprinted tissue exist (Fig. D-E). Our findings indicate that vascularization of bioengineered skin tissue is a complex and controllable process, and precise conditional control can achieve effective vascular network generation.